Chemokines Associated with Pathologic Responses to Orthopedic Implant Debris

نویسندگان

  • Nadim J. Hallab
  • Joshua J. Jacobs
چکیده

Despite the success in returning people to health saving mobility and high quality of life, the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after approximately 15-25 years of use, due to slow progressive subtle inflammation to implant debris compromising the bone implant interface. This local inflammatory pseudo disease state is primarily caused by implant debris interaction with innate immune cells, i.e., macrophages. This implant debris can also activate an adaptive immune reaction giving rise to the concept of implant-related metal sensitivity. However, a consensus of studies agree the dominant form of this response is due to innate reactivity by macrophages to implant debris danger signaling (danger-associated molecular pattern) eliciting cytokine-based and chemokine inflammatory responses. This review covers implant debris-induced release of the cytokines and chemokines due to activation of the innate (and the adaptive) immune system and how this leads to subsequent implant failure through loosening and osteolysis, i.e., what is known of central chemokines (e.g., IL-8, monocyte chemotactic protein-1, MIP-1, CCL9, CCL10, CCL17, and CCL22) associated with implant debris reactivity as related to the innate immune system activation/cytokine expression, e.g., danger signaling (e.g., IL-1β, IL-18, IL-33, etc.), toll-like receptor activation (e.g., IL-6, tumor necrosis factor α, etc.), bone catabolism (e.g., TRAP5b), and hypoxia responses (HIF-1α). More study is needed, however, to fully understand these interactions to effectively counter cytokine- and chemokine-based orthopedic implant-related inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pathology of Orthopedic Implant Failure Is Mediated by Innate Immune System Cytokines

All of the over 1 million total joint replacements implanted in the US each year are expected to eventually fail after 15-25 years of use, due to slow progressive subtle inflammation at the bone implant interface. This inflammatory disease state is caused by implant debris acting, primarily, on innate immune cells, that is, macrophages. This slow progressive pathological bone loss or "aseptic l...

متن کامل

Cobalt-Alloy Implant Debris Induce HIF-1α Hypoxia Associated Responses: A Mechanism for Metal-Specific Orthopedic Implant Failure

The historical success of orthopedic implants has been recently tempered by unexpected pathologies and early failures of some types of Cobalt-Chromium-Molybdenum alloy containing artificial hip implants. Hypoxia-associated responses to Cobalt-alloy metal debris were suspected as mediating this untoward reactivity at least in part. Hypoxia Inducible Factor-1α is a major transcription factor invo...

متن کامل

Current research in the pathogenesis of aseptic implant loosening associated with particulate wear debris.

Periprosthetic osteolysis is the most common long-term complication of a total joint arthroplasty, often resulting in aseptic loosening of the implant, which occurs in up to 34% of younger implant recipients and usually requires surgical revision. Particulate wear debris, continuously generated by articulating motion at the bearing surfaces, has been implicated as one of the primary causes of p...

متن کامل

Implant Removal Matrix for the Upper Extremity Orthopedic Surgeon

Orthopedic implant removal is a commonly performed procedure. While implant removal can be associated withimproved symptoms, risks of the surgery are notable. Stripped screws, broken and retained hardware, and morbidityassociated with soft tissue compromise during difficult removal are all common. Familiarity with the instruments iscritical to procedure success. The purpose of...

متن کامل

Biologic effects of implant debris.

Biologic response to orthopedic implants debris is central to clinical performance. Eventual implant loosening due to aseptic osteolysis has been attributed to local inflammatory responses to wear and corrosion products that are produced by articulating implant interfaces. The response to implant debris is dominated by local immune activation, e.g. macrophages. Immune reactivity has been shown ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017